reviewed paper

Automated Urban Management Processes: Integrating &raphical Editor for Modular Domain-
Specific Languages into a 3D GIS

Michel Kramer, Andreas Stein

(Michel Kramer, Fraunhofer Institute for Computelaf@ics IGD, FraunhoferstraRe 5, 64283 Darmstadin&may,
michel.kraemer@igd.fraunhofer.de)

(Andreas Stein, Fraunhofer Institute for Computeagbics IGD, FraunhoferstralRe 5, 64283 DarmstadinGey,
andreas.stein@igd.fraunhofer.de)

1 ABSTRACT

In this paper we present the results of integragimgaphical editor for geospatial processing work$ into

a 3D GIS. We use modular domain-specific langug@¥sLs) that are tailored to specific application
domains. The vocabulary consists of so-called excifhat are grouped into cookbooks representing the
language for a certain application domain. Recigas be reused in multiple cookbooks. This approach
allows for a good usability as the user quickly dmes familiar with the domain-specific languages by
recognizing common recipes. In this paper we aészibe guidelines for choosing the right grantyaior
recipes which allows for complex rules while ussigplest possible recipes. We also describe a \eoovkf
for domain-specific language design based on ogimboto identify the correct domain vocabulary. Our
approach can be used to automate processing opaedsdatasets in the area of urban planning. To
evaluate our approach we use the implemented gaphile editor in a practical scenario and presidnta
user group from the urbanAPI project.

2 INTRODUCTION

Geospatial data is used in a wide range of appdiasit One of them is urban planning where spat ds
used for urban assessment or simulation of plandiegsions as well as environmental and disaster
management, etc. These applications often regh&#edbmain expert to integrate or harmonize data, to
process it in order to derive new information, 8eut as input for simulation algorithms, and fipato
visualize data in order to assess the results. yithaese steps are mostly performed manually usarggdard
GIS software. This can be quite tedious, especiélthe planning scenario is complex and is subject
discussion—Dbe it amongst urban planners and mualidecision makers or even in public. Discussion is
inevitable in urban planning and of course a usifsirument to improve urban development. However,
expectations of stakeholders often change throiggusision. If this happens constantly, urban plesnl
likely have to process all the spatial data agaith again. If they have to do that manually, newatiens

will be rather lengthy and presumably expensiveiofated processes can help alleviate this problem.

Today, the amount of spatial data to be analyseldpancessed grows continuously. For example, modern
satellite imagery produces more data per day tharoduced during several months a few years agerer

is a growing need to analyse this information foplecations such as urban planning. For example]lga
images showing development over several years earséd to estimate or simulate urban growth. Sewaych
LIDAR data for special geological formations cart aoly help assess areas for urban developmerdaldoit
recognise environmental risks such as landslidee. [arger the data to analyse becomes, the more the
domain expert depends on automated processes.

One way to automate processes in today’s GIS sodtwsto use scripts written in a general purpose
language—for example Visual Basic or Python as sedhe proprietary software solution ESRI ArcGIS.
On the other hand there are some products suchfasSeftware FME Desktop that try to ease the @®ce
definition by using graphical elements such asrdiag or graphical workflow representations. Howeirer
recent years another approach—which is actually-kmglwn for quite some time in computer science—has
become more and more prominent. In order to allearsi with non-IT background to specify complex
configurations, rules and workflows, so-called dowspecific languages (DSLs) are used. Such larggiag
have a limited vocabulary that is tailored to sfieapplication domains or even single use cas&l.D
allow the domain experts to express problems iir thh&n words, in fact to program complex workflows
without the need for a background in computer s@er a deep understanding of programming.

To summarize, for urban planning large amountsabé ¢have to be processed over and over again.r€urre
automation solutions use general purpose languagesther graphical representations that are quite
complex, probably hard to understand for non-ITspenel and hence error-prone. Domain-specific

Proceeding®REAL CORP 2014 Tagungsband ISBN: 978-3-9503110-6-8 (CD-ROM); ISBN: 978-3-950817-5 (Print) @r
21-23 May 2014,Vienna, Austria. http://www.corp.aEditors: Manfred SCHRENK, Vasily V. POPOVICH, Pef&EILE, Pietro ELISEI

Automated Urban Management Processes: Integrat@gghical Editor for Modular Domain-Specific Larages into a 3D GIS

languages can help reduce the complexity of a Bpgebblem to an application domain that is wellekvn

to the user—i.e. the domain expert. In this papemwesent the results of integrating a graphicabebr
domain-specific languages into an existing 3D GM& use chainable production rules to allow the tser
create sequential workflows. We describe the bgsaenmar for our languages and the Ul elements we
implemented. Finally, we evaluate if our soluti@mde used reasonably in a selected scenario.

3 STATE OF THE ART
Domain-specific languages (DSLs) are languages thélfollowing properties:

e They are tailored to a specific application don@iven to a single use case;
« The language’s vocabulary contains words well knéovihe domain expert;
e The language’s expressiveness is rather limited.

The latter means the language cannot be used hergepurpose—that’'s why it is indeed called a doma
specific language—nbut instead it is a lot easiantderstand and to use for non-IT personnel.

In computer science, domain-specific languages e used for quite some time already. In the IETF
protocol specifications, for example, DSLs are veften used to facilitate interoperability becaudlsey
avoid machine-dependent minutiae such as encodgugs. Apart from that, in the UNIX operating syste
you can very often find DSLs in configuration fildsor example, the Apache HTTP server configuration
files are written in a special language using wdiden the domain of web server configuration—e.g.
RewriteRule, Redirect, Proxy, etc. Furthermore, B8te also used in database management systems. SQL
for example, is in fact a domain-specific language.

DSLs can be created in various ways. Martin Foglees a comprehensive overview over domain-specific
language design (Fowler, 2010). He differentiatetsvben internal DSLs and external ones. InterndldDS
are embedded into a host language, most often erglepurpose language. External ones have their own
custom syntax and grammar.

Modern dynamic languages such as Groovy or Ruloyvadlevelopers to create internal DSLs very eabhily.
Groovy you can even alter the language’s syntakuilding and traversing arbitrary abstract synteaes
(ASTs) with compiler plugins. Static languages oft® not provide such means, but Scala, for exangple
known to have been used already for a lot of imeBSLs. For example, Lee et al. developed thet®eli
Compiler Framework which uses a DSL embedded imalaS(Lee et al., 2011). Delite can be used to
execute parallelized code on multiple platformse DEL abstracts the code from the actual platfdris i
executed on. Lee et al. use a technique calledutgegvirtualization (Chafi et al., 2010) which albthem

to reuse existing Scala compiler components sudéxas, parser and type checker. Apart from that, gan
also find embedded DSLs in Java. Albeit being resi by the host language’s syntax so-called fluen
interfaces have been widely adopted. Fluent intedare often referred to as being internal DSLs.

Compared to internal DSLs, external ones are rsiticeed by the host language. With the right tdog
language designer is able to do almost anythingt like general purpose languages, external DSés ar
typically created using language recognition t@nish as Lex/Yacc or ANTLR, but they can also bateme
with sophisticated language workbenches such ag.Xte

Graphical DSLs use visual elements. They can bedan areas such business process modelling. For
example, BPEL (Business process execution languagd)XPDL (XML process definition language) are
domain-specific languages defining the executionas#ics of business processes. The MIT App Inveistor

a tool that allows developers to create Apps ferAndroid operating system using graphical progrargm
elements. However, App Inventor tries to mimic agyal purpose language and therefore goes beyend th
scope of typical a DSL.

There are existing tools containing a graphicaloedhat can be used to specify geospatial operatibor
example, with ESRI's ArcGIS ModelBuilder (whichpsurt of the ESRI's ArcGIS Spatial Analyst) usera ca
perform operations such as classification or codation on data that matches given criteria. TheGAB
ModelBuilder is targeted to geospatial applicatiamsl therefore only contains operations neededig t
domain. This includes spatial indexes (and opematieuch as “near” or “inside”) as well as geomatric
operations (such as building buffer polygons). Tb@ supports 2D data and 2,5D raster data, blislac
support for higher dimensions. 3D city models ave/adays an integral part of the urban planning gssc

m REAL CORP 2014:
PLAN IT SMART

Michel Kramer, Andreas Stein

Such kind of data cannot be processed with the I&d@odelBuilder. The approach presented in thisepap
however, can be applied to 3D data.

The use of domain-specific languages in the araarlmdn planning is rather novel. In one of our ey
papers we present a first approach of performimguumpolicy modelling and making with the help offIC
enabled tools, in particular domain-specific larggsg(Kramer et al., 2013). We use DSLs to defid&Eyo
models that can be used during the planning phasd, also for automated evaluation of policy
implementations later on. Compared to the apprdackhis paper, we use textual DSLs—instead of
graphical ones—to define the policy model which esak very readable and easy to understand for mhoma
experts (i.e. urban planners). In order to speaifjomated workflows, however, we suggest usinghicab
DSLs consisting of simple conditions and processtegs tailored to the urban planning applicatiomalin.
With the graphical editor presented in this pageecifying a workflow is a matter of selecting ttght
conditional blocks and actions, putting them in imrect order and specifying some parameters if
necessary.

4 LANGUAGE SPECIFICATION

In our implementation geospatial processes areritbescusing so-called production rules. They cdnsis
two parts (cf. figure 1):

e The condition (or left-hand side) selects objeatsnf the dataset. In our case, we essentially use a
chain of filters here that is applied to the whdbtaset. Objects that pass the filter chain will be
selected.

* The rule’'s consequence (or action, or right-hartk)sispecifies what should be done with the
selected objects. In our implementation you can wuadous pre-defined actions for data
manipulation.

Production rules are event-based and can be chdixeduting a rule may alter the dataset. This triigh
the condition of another rule become true whicHh tien be executed as well. This process is tylyical
called forward chaining. It is an integral partwbduction rule systems which allows the user &ate
complex processing workflows.

Rule

Condition Action

RR...:{>RR

Fig. 1: A production rule consists of a conditibeftthand side) and an action (right-hand side)hlmontaining recipes (here
symbolized with ‘R’). If the condition evaluatesttae, the action will be executed.

In our implementation, rules are specified with-gedined, reusable components that we call recipes.
improve usability we implemented so-called cooklsoakich group recipes by the application they aedu
in. For example, our rule editor provides a humtrerecipes to assess data quality. All of themkey in a
cookbook called ‘Quality Assurance’. Basically, kbooks represent different domain-specific langsage
The *Quality Assurance’ cookbook, for example, egmts the language that contains the vocabulaheof
‘quality assurance domain’ (cf. figure 2). Mosttbe recipes in this cookbook use terms specifithi®
domain, others are rather generic and can be rénsedgtious domains. They are hence assigned ttipiaul
cookbooks. This allows for a good usability asuker quickly becomes familiar with the individu@aindain-
specific language vocabulary by recognizing commsmipes.

Proceeding®REAL CORP 2014 Tagungsband ISBN: 978-3-9503110-6-8 (CD-ROM); ISBN: 978-3-950817-5 (Print) m
21-23 May 2014,Vienna, Austria. http://www.corp.aEditors: Manfred SCHRENK, Vasily V. POPOVICH, Pef&EILE, Pietro ELISEI

Automated Urban Management Processes: Integrat@gghical Editor for Modular Domain-Specific Larages into a 3D GIS

Quality Assurance Urban planning
Is triangulated Is building
Contains holes Is roof
Triangulate Has LOD
Fix holes Add to layer
Set LOD

Fig. 2:Recipegconditions and actions) are grouped into appboaspecificcookbooksin this case, there is a
cookbook containing recipes related to quality esce and another one containing recipes for upbaming.

The recipes that can be used in a rule’s conddierfunctional filters without side-effects. Thikws them
to be used in arbitrary order. The recipes on the's right-hand side are imperative actions thasinbe
executed in the order specified since one recigiaepend on the results of another.

In order to achieve good usability we designedrale editor as follows:

e The recipes are intended to be self-explanatoryhferdomain experts. They use domain vocabulary
and they do not expose too many technical detaillse user.

* The rule editor detects conflicting input and tliere helps users to create correct rules. For
example, the rule editor disallows the user to agpe recipe to a rule’s right-hand side if there is
already a recipe that deletes the selected dataother recipe would be useless after that.

* We have defined guidelines for granularity (sedisecs) in order to enable complex rules while
using simplest possible recipes.

Some of the recipes require additional informafram the user. Hence the recipes can have parasn&iar
example, there is an action to extrude a plane #Bnto 3D which needs the user to specify the tei@hr
rule editor provides forms for the recipe paranseter

5 GRANULARITY

In order to achieve a good usability we took sdemee to create recipes that are as simple ashb@bsit at
the same time as powerful as needed, so rulebavilinderstandable for the domain expert and ndiatge
(i.e. powerful). Condition recipes and action resighould be categorized as follows:

e Location. Recipes from this category operate on the lonatfoobjects in the dataset. For example,
the data source (web service, file, etc.), therlétye object is assigned to, and so on.

* Property. This category contains recipes that operate gecblattributes such as colour, texture,
metadata, level of detail (LOD), object type, etc.

« Geospatial Recipes from this category are related to ge@paoperties of objects in the dataset.
For example, height, width and depth of an objgetspatial coordinates, etc.

Each recipe can only be assigned to one categbigt means condition recipes cannot filter for props
from more than one category. Action recipes shalib only alter properties from one category. For
example, it would be violating to create a recipked ‘Colourise and move’ which at the same tirhanges

an object’s colour and its geospatial coordinadelsetter solution would be to create two separetépes.

In addition to the described categories the actamesdivided into three types: add, update andtelefn
action recipe which adds an object to a layer thén'location’ category and is of type ‘add’. Tiheee types

are similar to CRUD (create, read, update, delgteywn from database management systems) and ate use
to visually differentiate the recipes in the usgeiface.

m REAL CORP 2014:
- PLAN IT SMART

Michel Kramer, Andreas Stein

Recipe
ActionRecipe |-+ ConditionRecipe
Type Category
Add Location
Update Property
Delete Geospatial

Fig. 3: UML class diagram of the implemented reaipadel. Categories help developers to separate emaad therefore to find
the right granularity for new recipes.

6 LANGUAGE MODELLING BASED ON ONTOLOGIES

A domain ontology is a set of concepts (things thast in that domain), their classification, redas, and
terminology/taxonomy (i.e. the words used in thendim to describe the concepts). The definition of a
formal ontology is considered an essential steéwnain-specific language design or even for affiyvsoe
project (GaSev, 2006).

In this work we aim for creating domain-specifiadmages that use terms from the user’'s domain.l@yto
building is used in the area of semantic web tantifie concepts and relations from a given applmati
domain (Nicola, Missikoff, & Navigli, 2009). Ontajes can be useful for the definition of domainesfie
languages where they act as the basis from whehatkonomy, vocabulary, and parts of the grammar ar
derived. Note that in our approach, ontologiescalg used for this specific purpose. We do not nibean
anymore after we defined the domain-specific laggudhey are just one step in our modelling pracess

In order to create a domain-specific language vggest the following workflow:
(1) Analyse the application domain.
(2) Create scenarios/storyboards.

(3) Analyse storyboards and look for subjects abfbais. Create an ontology and use the subjects and
objects as concepts.

(4) Look for verbs. Use them in the ontology asiiehs to connect subjects and objects. Free \hdabtsare
not related to concepts become actions in yourdage,.

(5) Build sample DSL scripts that use the creatgdlogy and the free verbs.
(6) Review and reiterate if needed.

It is crucial that language modelling is perforniadstrong collaboration with domain users, so timalf
language contains the vocabulary that is actualgdun the targeted domain and can in fact be stabst

by the domain experts. In the following example oase a workshop was held where we designed domain
ontologies and a domain-specific language on theetbard together with the users.

7 EXAMPLE USE CASE

In this section we are going to discuss a use ftasethe research project “urbanAPI” which is fuddeom
the 7" Framework Program of the European Commission. Ghthe project’s consortium partners is
Vitoria-Gasteiz, the capital city of the Basque @y and of the province of Alava in northern Spain
Vitoria-Gasteiz is the European Green Capital df20A network of public zones, green spaces, pankd,
boulevards extends over the entire city. It is@umded by the Green Belt, a narrow semi-naturargezea

Proceeding®REAL CORP 2014 Tagungsband ISBN: 978-3-9503110-6-8 (CD-ROM); ISBN: 978-3-950817-5 (Print) E
21-23 May 2014,Vienna, Austria. http://www.corp.aEditors: Manfred SCHRENK, Vasily V. POPOVICH, Pef&EILE, Pietro ELISEI

Automated Urban Management Processes: Integrat@gahical Editor for Modular Domain-Specific Larages into a 3D GIS

which plays an important role in improving citizémealth and quality of life, as well as raisingngeal
environmental awareness throughout the public.

The municipality plans to extend urban green aegak in particular, to implement an Interior Gregit
that encompasses the city’s inner core. For tlagispof the city need to be restructured. For exentpe
Avenida Gasteiz—one of the main traffic routes—wi#l refurbished by adding grass, trees and pl@its.
course, such a construction project has a highéimpa public life. The municipality tries to raiagvareness
of this project within the public by providing 30sualisations showing the planned restructuringshef
Avenida Gasteiz.

In order to create a 3D visualization the city dfovia-Gasteiz needs a 3D city model. They can ioleat
least two datasets that can be used as a basth¢vage such a model: a digital terrain model (DEMJ a
dataset containing 2D building footprints from ttedastre. The latter includes various attributes #ne
useful for this use case. The attribute ‘Number@dE$’, for example, can be used to approximate a
building’s height by multiplying it by an averadedr height of 3 meters.

The municipality wants to build up an automatedcpss that ensures the city model is updated wheltlave
base datasets have changed. In order to creatmairdspecific language that can be used to desstibk
an automated workflow we have to perform an ontplagalysis as described in section 6. One of tts¢ fi
steps is to create a storyboard for this workflavhich—written from the perspective of the domain
expert—can be summarized as follows:

“As an urban planner | want to automatically creaeD city model. As base data | want to use twers,
a digital terrain model (DTM) and a dataset coniamn 2D building footprints. For each building indltity
I know its number of floors from the building fowtps dataset. In order to create a 3D represematof a
building, | copy its footprint polygon and put i ¢the DTM. Then | extrude it by the number of thiédding
floors multiplied by 3 meters. | add the extrudedtprint to the 3D city model, but only if a restiee
building does not already exist there.”

By analysing the storyboard and looking for sulgecobjects, and verbs that act as concepts anbrea
respectively, we can create an ontology that costéiie domain vocabulary needed for this workflow.
Figure 4 depicts this ontology. Note that in thigopr we only focus on one workflow. The Vitoria-Gés
use case is much larger, and so is the final ogyolBigure 4 only depicts a small part of thatparticular
the concepts and relations needed to understarekémeple.

3D city model

has

Digital terrain
model (DTM)

ison
« Building
is on has

has
isin IS

Extruded
footprint

is based on
Fig. 4: Domain ontology derived from the examplargboard. Note that the complete Vitoria-Gasteig case is larger than the
example use case presented here and that thimgytsljust an excerpt from the complete one.

isin

Number of floors

is based on

There are some free verbs such as ‘copy’ or ‘egirtitht do not appear in the ontology. They arediated
to actions in our domain-specific language directly

The recipes that make up our example DSL are suipeabelow. They are based on the ontology and the
guidelines described in sections 4 and 5 dealiriy usability and granularity. Note again that ifsthaper

we can just present a part of the complete VitQ@steiz use case, and the recipes presented bedgusa

the ones needed to perform this specific workflow.

m REAL CORP 2014:
PLAN IT SMART

Michel Kramer, Andreas Stein

Conditions
Is in layer

This recipe is for filtering layers. You can spgcif layer here and only objects inside this layél lve
selected. In this scenario there are two layers,fonthe terrain (DTM) and one for the footprinfge use
this recipe to select only footprints.

Does not exist in

You can specify a layer and this filter skips djerts which are already part of this layer. Whis trecipe
we can avoid extruding already processed footpagtsn.

Actions

Copy

This recipe creates a copy of all selected objsctgriginal ones will not be affected by any o thllowing
action recipes. The copies will be selected wikedriginal objects will be unselected. The Comype is a
simple way to back up the original data, in thisecthe original footprints.

Put on DTM

With this recipe you can lift or lower objects tbet height of a digital terrain model. It requires n
parameters, because it takes the terrain modeitm@above the object.

Extrude

This recipe extrudes a 2D footprint polygon withotwarameters: the amount of floors obtained froe th
footprints metadata—i.e. the attribute ‘NumberO&if&b—and the height for a single floor. For examae
footprint with 3 floors and 2.5 meters per floorwa be extruded to a height of 7.5 meters.

Move into layer

This recipe moves all selected objects to a spetlfiyer. This recipe is very useful in combinatiath the
copy recipe in this scenario (see rule #1 below).

7.1 Rules

The rules that need to be created for this workfiow as follows (in the order of execution; eade’su
condition and action are separated by an arrewy:*

7.1.1 Rule#l
Is in layer— Copy; Move into layer

The 2D footprints selected with the condition recifs in layer’ are copied and moved into a newetay
After executing this rule there are three laydrs:driginal footprints, the copied footprints ahd DTM.

7.1.2 Rule #2
Is in layer— Put on DTM; Extrude

This rule takes the footprints from the copied fayis them to the height of the DTM at the respe
geospatial location and then extrudes them as idesicabove.

These rules can be executed to initially creatatya model. Later, new footprints can be added. The
following additional rule can then be executed edpdly to keep the city model up-to-date. It alettie
dataset similar to the second rule but ignoresdirextruded footprints.

7.1.3 Rule #3
Is in layer; Does not exist ir» Put on DTM; Extrude

The recipe ‘Is in layer’ selects the original layérfootprints. The ‘Does not exist in’ filter avts multiple
objects in the layer of already extruded footprifits. the city model). Therefore no 3D buildinglivexist
multiple times in the final layer. The actions as@actly the same as in rule #2.

Proceeding®REAL CORP 2014 Tagungsband ISBN: 978-3-9503110-6-8 (CD-ROM); ISBN: 978-3-950817-5 (Print) m
21-23 May 2014,Vienna, Austria. http://www.corp.aEditors: Manfred SCHRENK, Vasily V. POPOVICH, Pef&EILE, Pietro ELISEI

Automated Urban Management Processes: Integrat@gghical Editor for Modular Domain-Specific Larages into a 3D GIS

8 INTEGRATION INTO A 3D GIS

The CityServer3bis a client-server system for the storage, visatitin, and processing of spatial data. Geo
information from different sources is integratetbi@an object-relational database and placed invile at
the disposal of different clients. The CityServeri8Dmost often used for managing 3D city modelshim
urban management and planning domain.

The CityServer3D AdminTool is a desktop applicatmoviding features, such as importing and expgrtin
spatial data into the local workspace or into tlitgServer3D database. The tool also offers featimedata
editing, 3D visualization and quality assurance.

The user interface of the AdminTool can be custechiwith different views, depending on the custosier’
requirements. The most used and most importantsvene the explorer view for an hierarchic overvigw
the loaded spatial data, the 3D view for visuailimaand the 2D view for orientation (see figurer@nfi left

to right). In addition there are pre-built perspezs representing the various views in differergrahents.

We integrated the graphical editor in the so-callgject perspective’ (see figure 6). This perdwec
allows users to create several projects to integtata sources and to apply automated, geospadzgses
to them.

P Chacipsetbiim - CiyServer30 AdminToo! 1.0 ML —— -)Y ———
Datei Bearbeiten Objekt Suchen Einfugen Server Gehezu Ansicht Fenster Hiife

21 k@O0 W Ei

@ = 5 Pro
— — -
1 o @ Karte Toeoen
» “Dsta, |magery and map information provided by Map@ue®i Opereies
[

v

B EPSG.II46T - 44712440 / SS40S47.T1 / 185,86 562M von 1138M

Fig. 5: The CityServer3D AdminTool consists of aadexplorer, a 3D visualization and a 2D map (freftto right).

[P "Untitied - CityServer3D Admi
File Edt Object Search I

=@ =

cHE i @eke

e 5 [Projects 2 30
(5 Proj 2 Eige | = Expl O [f Colorize buildings.rule £ * O[] Scene View £3 =i
SR E—— <o I
1 Project i
i Data sources Conkbools Condition l

_ Production

Redpes Loyes Tedturing

Object type

Metadata

Teturing olorize s
¥ ol metadats

Geographic

Graphical Editor
| Reports

Type Message

BB EPSG:31467 - 344725158 / 554055600 / 168.06 250M of 1138M

Fig. 6: The CityServer3D AdminTool’s project persipe

! http://www.cityserver3d.de

2

REAL CORP 2014:
PLAN IT SMART

Michel Kramer, Andreas Stein

The report view (on the bottom of figure 6) is usedfeedback while executing a rule. If an objeatild not
be changed or filtered by the rule for any reasoreport will appear in this view with a feedbackssage
and a link to the said object.

The project view (on the left of figure 6) offeriset possibility to link specific data sources andngran
overview of all created rules.

The graphical editor itself is subdivided in thpsets (see figure 7). The tool bar on the left sidetains all
recipes available in the selected cookbook. Thevbn@cipes are conditions. They filter objects bjedent
criteria—e.g. appearance, location, size or metadahe other recipes are actions and differ byrthei
function. Blue recipes are for editing, green oages for creating and red ones are for deleting. détia
action recipes are placed on the lower right sidaeeditor.

Graphical Editor & 0
Cookbooks Condition
[Production V|
Recipes Iz in layer D:?e.s ol
exist in
Metadata List
qus A 3 Action
exist in
F Put on DTM Extrude
Selection
Copy

Graphical Editor

Fig. 7: The user interface of the graphical ruleced

9 EVALUATION

In order to evaluate the usefulness of our implaaten a workshop with urban planners from the user
community of the urbanAPI project was held. We pnésd the graphical rule editor and asked partitgpa
to design their own workflows with it. We then pid®d a questionnaire where we asked them to ewaluat
the rule editor.

From a technical perspective, the evaluation shibsour implementation helps users automate pseses
and that it is relatively easy to use. They unaedtits functionalities and purpose and were ablese it to
design selected workflows. However, at the curstate the editor only provides a small set of regifhat
are targeted to use cases in urbanAPI specifidalig. to that, the editor is not yet flexible enougibe used

in more advanced scenarios. Consequently, oneeohdixt steps will be to implement more recipes that
target a wider range of geospatial/urban use cases.

Additionally, users pointed out that there hasdcssbme introductory material for the rule editooider to
make it easier for new users to understand itsaqais@and functionality. In the future we will credtitorials
that will guide the user through a simple examplerider to make them familiar with the rule editéinally,
the usability of the individual recipes can be ffertimproved by implementing additional featureshsas
greater/less comparison for metadata, selecti@xtents out of a 2D map, etc.

10 CONCLUSION

In this paper we presented the results of integyadi graphical editor for domain-specific languaigs a

3D GIS. We described language elements and howategarized them into recipes and cookbooks. Recipes
are language constructs that can be used in vadppBcations. In order to achieve good usabilitsg

Proceeding®REAL CORP 2014 Tagungsband ISBN: 978-3-9503110-6-8 (CD-ROM); ISBN: 978-3-950817-5 (Print) m
21-23 May 2014,Vienna, Austria. http://www.corp.aEditors: Manfred SCHRENK, Vasily V. POPOVICH, Pef&EILE, Pietro ELISEI

Automated Urban Management Processes: Integrat@gghical Editor for Modular Domain-Specific Larages into a 3D GIS

grouped these recipes into cookbooks which actueflyesent the vocabulary tailored to specific igptibn
domains or use cases.

In order to allow the user to specify complex wowfs we used production rules that can be chained.
Geospatial processing can be rather complex arg ¢mnsuming, especially if the same process hag to
performed over and over again. We think that prtidacrules can help alleviate this problem. However
typically rule-based systems are quite generic\arg flexible. This makes them hard to use for dioma
experts with no background in computer science. ékjgect domain-specific languages to help domain
experts to express geospatial processes in their wards. This makes specifying workflows easier,
especially when the language constructs are grompedecognizable, reusable elements like thepeecive
proposed. In this paper we also presented guidefimrechoosing the right granularity while designimew
recipes. In our experience, these guidelines leaedipes that are reusable in a wide range oficgtjuns
and at the same time very understandable for doesgierts. We also described a workflow for domain-
specific language design that makes use of storgsoand ontologies to identify the right domain
vocabulary.

In order to show how our approach works, we presktite implemented user interface and how we applie
our approach to a practical scenario. Feedbacleddamom urbanAPl community was positive and we will
continue to develop this approach in the future.

11 ACKNOWLEDGEMENTS

Research presented here is partly carried outmittg project “urbanAPI” (Interactive Analysis, Sitation
and Visualisation Tools for Urban Agile Policy Inreptentation), funded from the 7th Framework Program
of the European Commission, call identifier: FP7H2011-7, under the grant agreement no: 28857itedta

in October 2011.

12 REFERENCES

CHAFI, H.; DEVITO, Z.; MOORS, A.; ROMPF, T.; SUJEETH, K.; HANRAHAN, P.; ODERSKY, M.; OLUKOTUN, K.:
Language virtualization for heterogeneous paratiehputing. In Proceedings of the ACM internatior@iference on
Object oriented programming systems languages ppléications - OOPSLA 10, vol. 45, no. 10, page 83510.

FOWLER, Martin: Domain-Specific Languages. Addisorsaliy Longman, Amsterdam, 2010.

GASEVIC, Dragan; DJURI, Dragan; DEVEDZCE, Vladan: Model Driven Architecture and Ontologyv@epment. Springer,
Berlin-Heidelberg, 2006.

KRAMER, Michel; LUDLOW, David; KHAN, Zaheer: Domainggcific Languages For Agile Urban Policy Modellitig.
Proceedings of the 27th European Conference On Mogleind Simulation (ECMS), edited by Webjarn
Rekdalsbakken, R.T. Bye and H. Zhang, 673-680. AlesNodvay, 2013.

LEE, H.; BROWN, K.; SUJEETH, A.; CHAFI, H.; ROMPF, ODERSKY, M.; OLUKOTUN, K: Domain-Specific Languagfs
Heterogeneous Parallel Computing. IEEE Micro, val.r&. 5, pages 42-53, 2011.

NICOLA, A. D.; MISSIKOFF, M., NAVIGLI, R: A softwareengineering approach to ontology building. InforimatSystems 34,
pp. 258-275, 2009.

B

REAL CORP 2014:
PLAN IT SMART

